Problem 01: Bounds

Given an integer function f and a non-empty interval $[m, n]$, compute the minimal and maximal values and positions of f in the interval.

$$
\begin{aligned}
& A= \\
& \mathbb{Z} \\
& \times \\
& B \\
& \mathbb{Z} \\
& n \\
& \mathbb{Z} \times \\
& \hline
\end{aligned}
$$

Solution

We can easily solve this with the following loop:
$P=Q \wedge i \in[m, n] \wedge u, v \in[m, i] \wedge \forall k \in[m, i]: \min \leq f(k) \leq \max \wedge f(u)=\min \wedge f(v)=\max$ $\neg \pi=(i=n), \pi=(i \neq n), t=(n-i)$

Of course, since $Q \nRightarrow P$, we'll need an intermediate condition $Q^{\prime}=Q \wedge$ $(i, u, v=m) \wedge(\min , \max =f(m))$, which can be easily reached by an appropriate assignment of i, u, and v.

Solving P for $i \leftarrow i+1$ gives

$$
\begin{aligned}
& P^{i \leftarrow i+1}=Q \wedge(i+1) \in[m, n] \wedge u, v \in[m, i+1] \wedge \forall k \in[m, i+1]: \min \leq f(k) \leq \max \\
& P^{i \leftarrow i+1} \simeq P \wedge \min \leq f(i+1) \leq \max
\end{aligned}
$$

Which leads to the following program:

$i, u, v, \min , \max :=m, m, m, f(m), f(m)$	
$f(i+1) \leq \min$ nin $\leq f(i+1) \leq \max$$f(i+1) \geq \max$ $u, \min :=$ $i+1, f(i+1)$ $v, \max :=$ $i+1, f(i+1)$ $i:=i+1$	

