Problem 04: n-th Power

Calculate the nth power of x

$$
\begin{aligned}
A & = \\
& \mathbb{Z} \\
& \times \\
& x \\
& \mathbb{N}_{0} \\
& \times \\
& \\
\mathbb{Z} & \times \\
& \mathbb{Z} \\
\mathbb{N}_{0} & \\
& \\
x^{\prime} & \\
n^{\prime} & \\
& \\
& \\
Q & =\left(x^{\prime}=x\right) \wedge\left(n^{\prime}=n\right) \\
R & =Q \wedge\left(y=x^{n}\right) \\
&
\end{aligned}
$$

Solution

We can construct the following loop (reached via $\left.Q^{\prime}=Q \wedge(i=n) \wedge(y=1)\right)$:

$$
\begin{aligned}
P & =Q \wedge i \in[0, n] \wedge\left(y=x^{(n-i)}\right) \\
\pi & =(i \neq 0) \\
t & =i
\end{aligned}
$$

As always, we solve P for decreasing t, i.e. for $i:=i-1$, using the fact that $x^{n+1}=x * x^{n}$:

$$
P^{i \leftarrow i-1}=Q \wedge(i-1) \in[0, n] \wedge\left(y=x^{(n-i)+1}=x * x^{(n-i)}\right)
$$

Thus arriving at the following program:

$y, i:=1, n$
$i \neq 0$
$y:=x * y$
$i:=i-1$

