Problem 11: Matrices: Sum

Given a square matrix $m[1 . . n, 1 . . n]$, compute the sum of the lower half triangle.

Solution

The formal presentation of the problem above more or less contains the solution to this problem. We can compute s with a nested loop:

$$
\begin{aligned}
P_{1} & =Q \wedge i \in[0, n] \wedge s=\sum_{k=1}^{i} \sum_{l=1}^{k} m[k, l] \\
\pi_{1} & =(i \neq n) \\
t_{1} & =(n-i)
\end{aligned}
$$

P_{1} is reached from Q via the intermediate state $Q_{1}^{\prime}=(Q \wedge i=0 \wedge s=0) \Rightarrow$ P_{1}. Let's solve P_{1} for increasing i :

$$
\begin{aligned}
& P_{1}^{i \leftarrow i+1}=Q \wedge(i+1) \in[0, n] \wedge s=\sum_{k=1}^{i} \sum_{l=1}^{k} m[k, l]+\sum_{l=1}^{i+1} m[i+1, l] \\
& P_{1}^{i \leftarrow i+1} \simeq P_{1} \wedge s=s+\sum_{l=1}^{i+1} m[i+1, l]
\end{aligned}
$$

We compute $\sum_{l=1}^{i+1} m[i+1, l]$ with nesting the following loop inside P_{1} :

$$
\begin{aligned}
P_{2}= & Q \wedge(i+1) \in[0, n] \wedge j \in[0, i] \wedge s=\sum_{k=1}^{i} \sum_{l=1}^{k} m[k, l]+\sum_{l=1}^{j} m[i+1, l] \\
\pi_{2}= & (j \neq i+1) \\
t_{2}= & ((i+1)-j) \\
Q_{2}^{\prime}= & Q \wedge(i+1) \in[0, n] \wedge j=0 \wedge s=\sum_{k=1}^{i} \sum_{l=1}^{k} m[k, l] \\
P_{2}^{j \leftarrow j+1}= & Q \wedge(i+1) \in[0, n] \wedge(j+1) \in[0, i] \wedge s=\sum_{k=1}^{i} \sum_{l=1}^{k} m[k, l]+\sum_{l=1}^{j} m[i+1, l]+ \\
& \quad+m[i+1, j+1] \\
P_{2}^{i \leftarrow i+1} \simeq & P_{2} \wedge s=s+m[i+1, j+1]
\end{aligned}
$$

At last, the expression $s=s+m[i+1, j+1]$ can be computed, thus leading to the following program:

| $s, i:=0,0$ |
| :---: | :---: |
| $i \neq n$ |
| $j:=0$ |
| $j \neq i+1$ |
| $s:=s+m[i+1, j+1]$ |
| $j:=j+1$ |
| $i:=i+1$ |

