Problem 24: Number of Digits

Given two natural numbers x and k, compute the number of digits needed to represent x in base- k.

$$
\begin{array}{rl}
A & = \\
& \mathbb{N} \times r \\
& x \\
& \\
N & k \\
& \times \\
\mathbb{N} \times & \times \\
\mathbb{N} & \\
& \\
x^{\prime} & \\
& k^{\prime} \\
& \\
& \\
R & \left(x^{\prime}=x\right) \wedge\left(k^{\prime}=k\right) \\
R & =Q \wedge k^{d}<x \leq k^{d-1}
\end{array}
$$

Solution

We can use the same method as in problem 05, this time using integer division instead of subtraction. y initially stores a copy of x, and is only used because otherwise x would be changed (and thus the Q part of R wouldn't be satisfied).

$$
\begin{array}{ll}
P & =Q \wedge\left(y * k^{d-1} \leq x\right) \\
\neg \pi & =y<k \\
\pi & =y \geq k \\
t & =\left\lfloor\log _{k} x\right\rfloor-d \\
Q^{\prime} & =Q \wedge(y=x) \wedge(d=1) \\
& \\
P^{d \leftarrow(d+1)} & =Q \wedge\left(y * k^{d} \leq x\right) \\
& \simeq P \wedge \pi \wedge(y=y \operatorname{div} k)
\end{array}
$$

The resulting program:

$y, d:=x, 1$
$y \geq k$
$y:=y \operatorname{div} k$
$d:=d+1$

