Problem 25: Sum of Digits

Given two natural numbers x and k, compute the sum of digits representing x in base- k.

$$
\begin{aligned}
& A=\mathbb{N} \times \mathbb{N} \times \\
& x \\
& k \\
& \mathbb{N} \times \mathbb{N} \\
& B \times \mathbb{N} \\
& x^{\prime} \times k^{\prime} \\
& Q=\left(x^{\prime}=x\right) \wedge\left(k^{\prime}=k\right) \\
& R=Q \wedge s=\sum_{i=0}^{\left\lfloor\log _{k} x\right\rfloor}\left(x \bmod k^{i+1}\right) \operatorname{div} k^{i}
\end{aligned}
$$

