Retrocomputing with Clash
Haskell for FPGA Hardware Design

Gergo Erdi

OFYOr-1010

OFo

Retrocomputing
with Clash

Haskell for FPGA Hardware Design

GERGO ERDI

https://unsafePerform.lO/retroclash/

https://unsafePerform.IO/retroclash/

8.1

Generative Graphics

The previous chapter ended with a way of generating a valid VGA signal, but
without any content yet. Now it is time to try our hands at displaying something
more interesting than a black screen. Remembering that vgaDriver provides the X
and Y coordinates of the current pixel, and vgaOut takes an RGB triplet, the job here
is to compute the color for each pixel based on its coordinates.

Combinational patterns

The most fundamental way of doing it is if we simply put a circuit between the
coordinates and the color. For example, using a combinational circuit, we can
draw red/green/blue/white stripes by looking at the bottom-most two bits of the
X coordinate. The logic itself is trivial:

rgbwBars
(KnownNat w, KnownNat h, KnownNat r, KnownNat g, KnownNat b)
=> (Index w, Index h)
-> (Unsigned r, Unsigned g, Unsigned b)

rgbwBars (x, y) = case fromIntegral x :: Unsigned 2 of
0 -> red
1 -> green
2 -> blue
3 -> white

black = (8, 6, 0)

red = (maxBound, 0, 0)

green = (0, maxBound, 0)

blue = (0, 0, maxBound)

white = (maxBound, maxBound, maxBound)

As the very polymorphic type of rgbwBars tells us, it can be used to drive a
display at any resolution and at any color depth. Let’s hook it up to our standard
choice of 640 x 480@60 video mode:

117

118 Chapter8 Generative Graphics

topEntity
:: Clock Dom25
-> Reset Dom25
-> VGAOut Dom25 8 8 8
topEntity = withEnableGen board
where
board = vgaOut vgaSync rgb
where
VGADriver{..} = vgaDriver vga640x480até0
xy = LiftA2 (,) <$> vgaX <*> vgaY
rgb = maybe black rgbwBars <$> xy

Here, the type of xy isinferred tobe Signal _ (Maybe (Index 640, Index 480)),
which drives the instantiation of rgbw to (w ~ 648, h ~ 480). Similarly, the type of
vga0ut constrains the color depthto (r ~ 8, g ~ 8, b ~ 8).

8.2 Stateful pattern generators

Our example function rgbwBars is nice and simple, but perhaps a bit too simple.
For example, suppose we wanted to draw just red/green/blue stripes instead of
red/green/blue/white. Calculating the modulus of the X coordinate by a power
of 2 can be done by simply dropping the lowest bits, but here we would need to
calculate it by 3 — not at all easy to do in a binary circuit.

Instead, we can use an RTL circuit to run a counter from 0 to 2, in lockstep with
the X coordinate. This means our rghBars will need to be a proper signal circuit,
not just a pure function:

rgbBarsl
(KnownNat w, KnownNat h, KnownNat r, KnownNat g, KnownNat b)
=> (HiddenClockResetEnable dom)
=> Signal dom (Index w, Index h)
-> Signal dom (Unsigned r, Unsigned g, Unsigned b)

For a first try, we can simply increase an internal Index 3 counter in every clock
cycle, and use that as an index into a lookup table of colors:

8.2 Stateful pattern generators 119

rgbBarsl xy = colors !!. counter
where
counter = register (0 :: Index 3) $ nextIdx <$> counter

colors = red :> green :> blue :> Nil

Hooking it up in topEntity is slightly different compared to the purely combi-
national rgbBars: since its input is now a Signal of coordinates, we have to always
feed it something.

-- Inside topEntity

rgh =
mux (isJust <$> xy) (rgbBarsl (fromMaybe (0,0) <$> xy)) $
pure black

We're ready to try it out. However, once hooked up to a real screen, instead of
nice vertical bars, we will see a checkerboard that flickers at 60 Hz:

T 1 Dulb@s e 1
InEE - 10Em
immce incme
o [N ol | I

ammaes afaesws wra
Eap
60

e The whole image is 800 - 524 = 419, 200 clock cycles, not divisible by 3. This
means every frame is drawn from a different starting state.

e Each line is 800 clock cycles, which is again not divisible by 3. Thus, every
visible line is offset by 2 (the remainder of dividing 800 by 3) compared to the
previous line.

We can fix both of these problems by restarting the counter at the start of each vis-
ible line. For this, we need to keep track of whether we are scanning the visible area:
the corrected version of rghBars gets the original, Maybe-wrapped coordinates, and
if the X coordinate isNothing, resets the counter to 0. The rest of the implementation
is unchanged:

120

8.3

Chapter8 Generative Graphics

rgbBars
(KnownNat w, KnownNat h, KnownNat r, KnownNat g, KnownNat b)
=> (HiddenClockResetEnable dom)
=> Signal dom (Maybe (Index w)
-> Signal dom (Maybe (Index h))
-> Signal dom (Unsigned r, Unsigned g, Unsigned b)

rgbBars x y = colors .!! counter
where
counter = register (0 :: Index 3) $

mux (isNothing <$> x) (pure 0) (nextIdx <$> counter)

colors = red :> green :> blue :> Nil

Animation

We have already, accidentally, implemented animated video in rghBars1: since each
frame started from a different state, the generated patterns were different frame by
frame. For more controlled animation, we can keep an internal state describing the
current frame, and synchronize its transition to the end of the frame.

We can detect the end of the frame simply by the vertical coordinate leaving the
visible area. In the following circuit, each frame is rendered in a solid gray color,
going from white to black. For simplicity’s sake, we will require all three color
channels to have the same depth.

grayAnim
(KnownNat w, KnownNat h, KnownNat c)

=> (HiddenClockResetEnable dom)

=> Signal dom (Maybe (Index w))

-> Signal dom (Maybe (Index h))

-> Signal dom (Unsigned c, Unsigned c, Unsigned c)
grayAnim x y = bundle (brightness, brightness, brightness)

where
brightness = regEn 0 endFrame $ nextIdx <$> brightness
endFrame = isFalling False (isJust <$> vy)

Our second animated example will show a more involved state transition: we
are going to draw a “ball” (more like a square) bouncing around, trapped between

8.3 Animation 121

the edges of the screen. Not only is this a simplified version of the bouncing DVD
logo — a staple of early-2000s video players — but it should also give us inspiration
for the next chapter, where we will build a fully playable Pong machine.

As before, our bouncing ball will simply be a pattern generator, i.e. a signal
function from coordinates to current color:

type BallSize = 35

bouncingBall
(KnownNat w, KnownNat h, KnownNat r, KnownNat g, KnownNat b)

=> ((BallSize + 2) <= w, (BallSize + 1) <= h)
=> (HiddenClockResetEnable dom)
=> Signal dom (Maybe (Index w))
-> Signal dom (Maybe (Index h))
-> Signal dom (Unsigned r, Unsigned g, Unsigned b)

bouncingBall vgaX vgaY = draw

where -- Continued below

The extra constraints on the minimal possible screen size are included because
we are going to draw our ball as a 35 x 35 square, so we will need at least that
much space; also, we will update the ball’s position in each frame by a speed of
(2,1), and our calculation would break down if there is not enough slack to move
the ball by that much. At this point, this might look overly pedantic, since there
are no VGA video modes with low enough resolution that this would be a problem.
However, later in this chapter we will use this same circuit to demonstrate coordinate
transformations which can create “virtual resolutions” internal to our circuit that
don't actually exist at the video output.

The key to implementing bouncingBall is the bouncing logic, of course. Because
all reflecting surfaces (the edges of the screen) are axis-aligned, we can save ourselves
a heap of trouble by decomposing the ball’'s movement into a horizontal component,
affected only by the vertical “walls”, and a vertical component, bouncing between

122

Chapter8 Generative Graphics

the horizontal “walls”. Thus, our state will be stored in two registers, updated at
the end of each frame, each one bouncing between two endpoints:

frameEnd = isFalling False (isJust <$> vgaY)

(ballX, speedX) = unbundle $ regEn (8, 2) frameEnd $
bounceBetween (0, rightWall) <$> bundle (ballX, speedX)

(ballY, speedY) = unbundle $ regEn (8, 1) frameEnd $
bounceBetween (0, bottomWall) <$> bundle (ballY, speedY)

Before we give the definition of rightWall and bottomWall, we need to think
about the type that we want to use for the state. For example, the X coordinate is
given to us as a Maybe (Index w), but it would be very painful to model all our ball
dynamics using Index w; for example, a temporary value like ballX + speedX might
not even be in bounds. Instead, we will do all Index n calculations in Signed k
for a sufficiently large k. What is sufficiently large? Since Index n has possible
values 0,1,...,n — 1, it takes up |_log2 n] bits. However, we want to use a signed
representation for a more straightforward implementation of bouncing. Recall that
Signed k is stored on k bits total, for a range of —pk=1 2k-1_1 gofora signed
representation we need [log, 1] + 1 bits total:

max0f

:: forall n p. (KnownNat n, 1 <= n)

=> p (Maybe (Index n)) -> Signed (CLog 2 n + 1)
max0f _ = fromIntegral (maxBound :: Index n)

rightWall = max0f vgaX - ballSize
bottomWall = max0f vgaY - ballSize

ballSize :: (Num a) => a
ballSize = snatToNum (SNat @BallSize)

Given the current values of ballX and ballY, drawing is a simple matter of
checking if vgaX and vgaY both fall within ballSize of them:

draw = mux isBall ballColor backColor

isBall = (near <$> ballX <*> vgaX) .&&. (near <$> ballY <*> vgaY)
where
near x0 = maybe False $ \(fromIntegral -> x) ->
X0 <= X && x < (x0 + ballSize)

ballColor = pure (Oxf0, OxeB, 0x40) -- Yellow
backColor = pure (0x30, 0x30, 0x30) -- Dark gray

8.3 Animation

All that remains is implementing bounceBetween itself. There are many ways to
do that; here we write a version that is based on multiple one-dimensional reflecting
surfaces, which makes it easy to add additional “walls”. We will use this ability in
the full-fledged Pong game in the next chapter, to only include the player’s paddle
as a vertical reflection surface if it is at the same height as the ball.

Each reflecting surface is characterized with a point and a surface normal (a
vector). If the ball is on the “far” side of the surface, then we need to mirror its
position along the point. Remembering that we have decomposed our ball’s motion
into two one-dimensional components, the normal “vector” is one-dimensional
as well, so instead of computing a dot product, we can simply compare signs to
determine which side the ball is. If a reflection occurs, we adjust the position and
negate the speed.

Wall
X0 X lp
. »>® [
' speedX Vldist =p - ;I

(1) x on the outside of p — No reflection

dist dist = p - x

(2) x on the inside of p — Reflected to x'

reflect
(Num a, Num a', Ord a, Ord a')

=> (a, a")
-> (a, a')
-> (a, a')

reflect (p, n) (x, dx)
| sameDirection n dist = (p + dist, negate dx)
| otherwise = (x, dx)

where

sameDirection u v = compare 0 u == compare 0 v
dist = p - x

123

124

8.4

Chapter8 Generative Graphics

When bouncing between two walls, at each time step we apply the current speed
to the position, and then reflect by two surfaces facing each other.

move :: (Num a) => (a, a) -> (a, a)
move (x, dx) = (x + dx, dx)

bounceBetween (lo, hi) = reflect (lo, 1) . reflect (hi, -1) . move

Exercises:

e Hook up some input switches to bouncingBall to independently change the
horizontal and vertical speed of the ball. Of course, the direction of motion
shouldn’t change when the speed changes, only its magnitude.

e Draw a fixed-width border around the screen, and have the ball bounce be-
tween them

e Flash the screen for one frame whenever a bounce occurs. This will require
changing reflect to report whether a reflection has occurred; we will need
this functionality for Pong anyway.

Coordinate transformations

As we have seen, the basic operation of our video circuit is to take the current
coordinates of the electron beam as input, and produce the desired color for that
pixel as output. Conversely, by putting a coordinate transformer circuit in front, we
can transform the output image.

For purely combinational circuits, any coordinate transformation works seam-
lessly. However, the situation is not that simple for stateful circuits. For example,
rgbBars, as written, internally keeps a counter that is updated in every clock cycle
inside the visible area. We can shift its image by feeding it a Just value for only a
subset of the real visible area, and it would produce the correct output. However, if
we tried to scale its output horizontally by feeding it the same X coordinate multiple
times, the counter would be incrementing for each cycle just the same: the result is
the same image as without scaling.

If, instead, we change rgbBars to only increment its counter when the current X
coordinate is different from the previous one, we get a version that can be used in a
wider variety of scenarios: any transformation (or composition of transformations)
resulting in a monotonically increasing (i.e. left-to-right, top-to-bottom) signal of
coordinates, when connected to this new rgbBars, would produce an image that is
consistent with the transformation.

8.4 Coordinate transformations

This scalable version of rgbBars is a bit tricky to get right. First off, we can
compare register Nothing x with x to find out if x has changed in the current cycle.
We would think that all that remains to do is change register 0 in the definition of
counter with regEn 0 newColumn, i.e. something like this:

scalableRGBBarsl x y = colors .!! counter
where
newColumn = changed Nothing x
counter = regEn (0 :: Index 3) newColumn $

mux (isNothing <$> x) (pure 0) (nextIdx <$> counter)

However, this version increments counter at the start of every “virtual” pixel.
For example, if we scale horizontally by 4, i.e. if we use scalableRGBBarsl with an
x signal that changes value every 4th cycle, then the value of counter will be as
follows:

Cycle x newColumn counter Output
0 Nothing False 0

1 Nothing False 0

2 Just 0 True 0 Red
3 Just 0 False 1 Green
4 Just 0 False 1 Green
5 Just 0 False 1 Green
6 Just 1 True 1 Green
7 Just 1 False 2 Blue
8 Just 1 False 2 Blue
9 Just 1 False 2 Blue
10 Just 2 True 2 Blue
11 Just 2 False 0 Red

If we started the register at maxBound instead of 0 when the visible area starts,
it would take the first increment to set it to the desired value 0. This means while
counter would still be wrong (it would lag one cycle behind the value we’d like), at
least its next-value-to-be would be correct:

Cycle x newColumn counter counterNext

Nothing False
Nothing False
Just O True
Just O False
Just O False

B W N = o
SO O NNDNDN
S OO NN

125

126

Chapter8 Generative Graphics

Cycle x newColumn counter counterNext
5 Just 0 False 0 0
6 Just 1 True 0 1
7 Just 1 False 1 1
8 Just 1 False 1 1
9 Just 1 False 1 1
10 Just 2 True 1 2
11 Just 2 False 2 2

Whenever we have a register whose value is lagging one cycle behind, we can
solve that by tapping into its new value instead of the value propagated from the
previous cycle. In general, this can be done by rewriting code of this form:

someCircuitl = ... r ...
where
r = register x0 $ f r

into this:
someCircuit2 = ... new ...
where
r = register x0 new
new = f r

reg reg
+—>»r
) f
(i)
+—» new
(1) someCircuitl (2) someCircuit?2

This transformation, together with starting from maxBound, leaves us with the
following version. Note that we can’t use regEn here, because we need the new value
counterNext to be already gated on newColumn. Thus the first mux in the definition
of counterNext.

scalableRGBBars x y = colors .!! counterNext
where
newColumn = changed Nothing x
counter = register (0 :: Index 3) counterNext

8.4.1

8.4 Coordinate transformations

counterNext =
mux (not <$> newColumn) counter $
mux (isNothing <$> x) (pure maxBound) $
nextIdx <$> counter

All this is not to say that the original rgbBars was “wrong”. Video pattern
generators need to be designed for specific use cases, and if we are building a circuit
that will generate video at the native resolution, it is perfectly fine to build a video
subsystem that exploits this fact. Moreover, supporting coordinate transformations
is not an all-or-nothing deal, but a spectrum — for example, as we have seen, rgbBars
works as-is for horizontal or vertical translations, but required some changes to work
for rescaling. Here, we present these two generally useful coordinate transformation
circuits: translation and scaling.

Restricting the visible area

We can restrict the physical visible area of w X I to a smaller w’ X h’ by keeping
the values of the virtual X and Y coordinate signals at Nothing for some of the time
that the real X and Y coordinates are already Just values. The generic form of this
transformation masks out parts of the visible area on both sides:

maskSides
(KnownNat n, KnownNat m, KnownNat k)

=> (HiddenClockResetEnable dom)
=> SNat k
-> Signal dom (Maybe (Index (k + n + m)))
-> Signal dom (Maybe (Index n))

maskSides k raw = transformed

where -- Continued below

We implement maskSides by starting a Maybe (Index n) counter whenever the
raw input equals Just k. To make maskSides compose nicely with other transform-
ers, we also implement the same logic as scalableRGBBars to only increment the
counter whenever the raw input changed:

changed = register Nothing raw ./=. raw
starting = raw .== Just (snatToNum k)

r = register Nothing transformed
transformed =
mux (not <$> changed) r $
mux (isNothing <$> raw) (pure Nothing) $
mux starting (pure $ Just 0) $
(succIdx =<<) <$> r

127

128

Chapter8 Generative Graphics

We can use maskSides to define simpler combinators that mask out only the k
pixels in the beginning or the end of the visible area. We write k + nand n + kin
the type signature to be evocative of which side we’re masking out:

maskStart
:: forall k n dom. (KnownNat n, KnownNat k)
=> (HiddenClockResetEnable dom)
=> Signal dom (Maybe (Index (k + n)))
-> Signal dom (Maybe (Index n))
maskStart = maskSides (SNat @k)

maskEnd
:: forall k n dom. (KnownNat n, KnownNat k)
=> (HiddenClockResetEnable dom)
=> Signal dom (Maybe (Index (n + k)))
-> Signal dom (Maybe (Index n))
maskEnd = maskSides (SNat @0)

With a bit more type-level arithmetic, we can also center a smaller image on a
larger one: here, thek ~ ((n@ - n) "Div" 2 constraintis effectively a type-level let
binding for the size of the padding needed (rounded down). Because of rounding,
we don't, in general, have n@ ~ k + n + k; instead, we set m to be the remaining
visible area. The Clash typechecker for arithmetic constraints is powerful enough
to solve n@ ~ (k + n + m). In fact, we've already used the solver’s power in the
definition of maskSides, where the size m of the trailing side is inferred from knowing
k,nandk + n + m. !

center
: forall n n@ k m dom. (KnownNat n, KnownNat n@, KnownNat K,
KnownNat m)
=> (k ~ ((nB@ - n) "Div: 2), n@ ~ (kK + n + m))
=> (HiddenClockResetEnable dom)
=> Signal dom (Maybe (Index n@))
-> Signal dom (Maybe (Index n))
center = maskSides (SNat @k)

IClash automatically enables a handful of typechecker plugins implementing painless KnownNat prop-
agation and arithmetic solvers for type-level naturals. These plugins can also be used with GHC proper,
by adding GHC.TypeLits.KnownNat.Solver, GHC.TypeLits.Extra.Solver, and GHC.TypeLits.Normalise
to the list of typechecker plugins loaded.

8.4.2

8.4 Coordinate transformations

Scaling

Scaling is very similar to a generalized version of scalableRGBBars: we keep an
internal counter that is incremented for every changed raw coordinate, and every

time we would “start drawing a new red bar”, the output coordinate is incremented.

We can keep doing this until the output coordinate hits its maximum value, after
which we reset it to zero the next time we enter the visible area. We also return the
“sub-pixel” coordinate for visible pixels.

scale

:: forall n k dom. (KnownNat n, KnownNat k, 1 <= k)

=> (HiddenClockResetEnable dom)

=> SNat k

-> Signal dom (Maybe (Index (n * k)))

-> (Signal dom (Maybe (Index n)), Signal dom (Maybe (Index k)))
scale k raw = (scaledNext, enable (isJust <$> scaledNext) counterNext)

where
prev = register Nothing raw
changed = raw ./=. prev

counter = register 0 counterNext
counterNext =
mux (not <$> changed) counter $
mux (isNothing <$> prev) (pure 0) $
nextIdx <$> counter

scaled = register Nothing scaledNext

scaledNext =
mux (not <$> changed) scaled $
mux (counterNext .== 0) (maybe (Just 0) succIdx <$> scaled) $
scaled

The order of type variables is carefully chosen so that we can write scale @nin
cases where the input and the output types wouldn’t be constrained otherwise; for
example, this allows us to write scale @n (SNat @) . center to transform # to
m > k = n by making each pixel n times larger, and then sufficient padding on both
sides.

Exercises:

e Write a 2D version of rgbBars, i.e. something that shows 9 different colors in
a repeating, 3 x 3 tile. Hint: the vertical divide-by-3 counter should only be
incremented at the end of each scanline.

129

130

8.5

Chapter8 Generative Graphics

e Combine two or more pattern generators by showing them in different parts
of the screen. A simplest version would be showing rgbwBars on one half
and rgbBars on the other half; for a more interesting challenge, try to de-
fine multiple window-like rectangles on the screen, each showing a different
pattern.

e Change the bouncing ball circuit to internally use a resolution of 300 x 200,
and render that to a 640 x 480 VGA mode by scaling up by two and centering
horizontally and vertically.

e The above change leaves a border 20 pixels wide on both sides and 40 pixels
high on the top and the bottom. Render these areas in some distinctive color,
without changing anything in the definition of bouncingBalls.

Animation, differently

One drawback of writing bouncingBalls in the above style is that the full circuit is
described as a monolithic function mapping signals to signals; as a consequence, it
can be arbitrarily stateful. In this section, we rewrite it in a more principled way
that will lend itself to high-level simulation.

The basic idea behind the restructuring is to split bouncingBalls into two func-
tions: a state transition function (the “bouncing”) and a drawing function (the
“balls”). Both of these are pure functions, with the state explicitly passed between
them by the top-level circuit via a register. This is similar to the calculator from
chapter 6.

In the calculator circuit, the state transition was triggered by user input. Ani-
mation, however, happens in real-time: the ball continues bouncing around on its
own. We will use the start of the vertical blanking period to trigger for the state
transition once for each frame, 60 times a second. This avoids potential graphical
glitches that could occur if, for example, the ball position would be updated just at
the same time as we are drawing its current position.

Moreover, although not a concern for our bouncing ball toy, for a more compli-
cated machine it might take several cycles to compute a full state update; by starting
just at the beginning of the vertical blanking period, we give us the most cycles pos-
sible before starting to draw the next frame.? For this reason, arcade machines and
home computers generally have some way of signaling from the video subsystem
to the CPU when the current frame is finished. In this computer-less circuit, we will
simply consume the Y coordinate output of the video controller directly.

2Technically, we could start even a bit earlier, when the horizontal blanking period of the last line
starts. The reason we aim for the start of the vertical blanking is to make the trigger logic simpler.

8.5 Animation, differently 131

Putting it all together, our design will be as follows:

»(® HSYNC / VSYNC

vgaX

draw ® RGB
vgaY i

(Updatema}—b en

7 state

VGA

e A VGA controller generates the sync outputs and provides the rest of the
circuit with the coordinates of the currently drawn pixel

e The animation state is stored in a register that is updated whenever the cur-
rently drawn frame ends.

e The drawing circuit takes the current state and the current video coordinates.
By comparing the video coordinate to the ball’s current position, it calculates
the object at the current coordinate, which determines the color of the currently
drawn pixel.

Since we have already written a VGA controller, the only parts we need to write
are the following definitions:

e data St, the animation state.

e updateState :: St -> St, the state transition function.

e draw :: St -> Index 640 -> Index 480 -> (Unsigned r, Unsigned g, Unsigned b),
the drawing function.

As with the calculator, none of these parts use Clash Signals in their interface.
We will exploit this property by assembling the same parts into a software imple-
mentation alongside the hardware one.

132

8.5.1

Chapter8 Generative Graphics

Animation state

Our only state is the ball position, stored in two pairs of Coords to represent the
ball’s position and speed horizontally and vertically. We generate lenses here which
we will use when writing updateState. The size of Coord is chosen to fit not
only ScreenWidth and ScreenHeight, but also the intermediate calculations during
reflect.

type Coord = Signed 10

data St = MkSt
{ _ballH, _ballV :: (Coord, Coord)
I3
deriving (Show, Generic, NFDataX)
makeLenses ''St

initState :: St
initState = MkSt
{ _ballH = (10, 2)
, _ballv = (100, 3)

To future-proof our code somewhat, we also create a datatype for the animation’s
parameters; in this case, the only parameter is the ball size. This will be useful for
one of the exercises later on.

data Params = MkParams
{ ballSize :: Coord
I3

deriving (Show, Generic, NFDataX)

defaultParams :: Params
defaultParams = MkParams
{ ballSize = 35
I3

Since the bouncing ball is autonomous, there is no user input to updateState.
We write it using the State monad so that we can compose bounceBetween
for the vertical and the horizontal axis by zooming on the relevant fields of
St. This is, arguably, overkill compared to something like \(St x y) ->
St (bounceBetween (8, w) x) (bounceBetween (8, h) y). However, when we
move on to implementing more complex circuits, like a full-blown Pong game in
the next chapter, we will need this flexibility for some of the stateful calculations
like detecting the collision between the ball and the paddle. Note that we subtract

8.5.2

8.5 Animation, differently

ballSize from the higher boundaries (bottom and right), since the coordinates
stored in the state represent the ball’s top-left corner.

updateState :: Params -> St -> St

updateState params@MkParams{..} = execState $ do
zoom ballV $ modify $ bounceBetween (0, screenHeight - ballSize)
zoom ballH $ modify $ bounceBetween (0, screenWidth - ballSize)

Although we could make the screen size a parameter, here we go a different
route to ensure that the ball stays exactly in the visible area: screenWidth and
screenHeight are reflected from type-level constants which we will also use in the
type of draw:

type ScreenWidth = 640
type ScreenHeight = 480

screenWidth :: Coord
screenWidth = snatToNum (SNat @ScreenWidth)

screenHeight :: Coord
screenHeight = snatToNum (SNat @ScreenHeight)

Drawing

We implement drawing by writing a pure function that is only concerned with vis-
ible pixels. For the color channels, although the final output is limited in depth by
the targeted hardware platform, here we use Words for each channel for 24-bit colors.
This allows us to specify the colors we’d like, not just the ones we can have; the latter
can be derived trivially in topEntity by just truncating the lowermost bits. However,
using Word8 will make simulation performance dramatically better. That is because
conversions like bitCoerce :: Unsigned 8 -> Word8, while a no-op in a real hard-
ware circuit, involves a significant simulation overhead, so we are better off if we
can avoid it three times for each pixel during simulation. By defining Color this way,
we only have coercions in the other direction, bitCoerce :: Word8 -> Unsigned 8,
in topEntity which is outside the context of our high-level simulation.

type Color = (Word8, Word8, Word8)

draw :: Params -> St -> Index ScreenWidth -> Index ScreenHeight -> Color
draw MkParams{..} MkSt{..} ix iy

| isBall = yellow

| otherwise = gray

where -- Continued below

133

134 Chapter8 Generative Graphics

This leaves us with only the problem of calculating if a given (ix, iy) coordinate
is within the area where we want the ball to be visible. Later, more complete versions
of draw will have exactly the same structure, just with more branches for isWall and
isPaddle.

The workhorse function of isBall and similar definitions is determining if the
current pixel is within a given axis-aligned rectangle. But first, we convert ix and
iy to Coords to be compatible with St’s fields.

fromIntegral ix
fromIntegral iy

< X
1

z "between’ (lo, hi) = 1o <= z && z <= hi

rect (x0, y0) (w, h)
X “between® (x0, x0 + w) &&
y “between® (y0, y0 + h)

Given these definitions, we can write isBall simply by checking if the current
pixel is in a ballSize X ballSize rectangle starting at the ball position:

(ballX, _) = _ballH
(ballyY, _) = _ballVv

isBall = rect (ballX, ballY) (ballSize, ballSize)

8.5.3 The top-level circuit

Let’s take stock of the components we have written so far:

e data St is our state, which we want to keep in a register.

e updateState is the state transition function, which should be used to update
the register at each frameEnd

e draw is the drawing function which calculates the color of the currently ren-
dered, visible pixel

Components we need to assemble it into a full circuit:

e A VGA controller to generate the sync signals and to keep track of which pixel
is currently rendered, if any.

e A signal frameEnd :: Signal _ Bool that fires at the end of each frame, to
trigger the state register’s update. This can be implemented by checking the
Y coordinate output of the VGA controller ceasing to be isJust, since that
means we have left the last visible line.

8.6

8.6 High-level simulation with SDL2 135

With these considerations, and using a 25.175 MHz clock as before for our chosen
VGA mode, the full top-level circuit is as follows:

createDomain vSystem{vName="Dom25", vPeriod = hzToPeriod 25_175_000}

topEntity
;i "CLK_25MHZ" ::: Clock Dom25
-> "RESET" ::: Reset Dom25
-> "VGA" ::: VGAOut Dom25 8 8 8
topEntity = withEnableGen $ vgaOut vgaSync rgb
where

VGADriver{..} = vgaDriver vga640x480at60
frameEnd = isFalling False (isJust <$> vgaY)

st = regEn initState frameEnd $ updateState defaultParams <$> st

rgb = fmap (maybe (8, 0, 8) bitCoerce) $
1iftA2 <$> (draw defaultParams <$> st) <%> vgaX <*> vgaY

Since all our changes in this section so far were just shuffling around parts
of the previous bouncing ball circuit, it shouldn’t be a surprise that compiling,
synthesizing, and uploading this circuit to an FPGA will result in the same video
output as before. So, what was the point?

High-level simulation with SDL2

Restructuring our circuit into two separate, pure functions, one for the state transi-
tion and the other to implement drawing, pays dividends when we want to write a
simulator for it. Justlike in the calculator project, here we can exploit the structure of
our code by assembling updateState and draw differently, into a sequential, stateful
program that does the following:

0. Create a window with a backing texture of size 640 x 480.

1. Poll for any potential user input; exit if the window is closed.

2. Passthe currentstate and all possible coordinate pairs (0, 0), (0, 1), . .., (639, 479)
to draw and record its output into the texture.

3. Apply updateState to the state and the interpretation of the input events.

4. If we have some time left out of the 1/60 of a second frame time, sleep for the
remainder.

5. Repeat from step 1.

We are going to use SDL2 to take care of the nitty-gritty of opening windows and
polling keyboard events in whatever operating system we use. SDL2 is a mature

136

8.6.1

Chapter8 Generative Graphics

cross-platform library with good Haskell bindings that don't get in the way.

Hello, SDL2!

Before jumping head-first into connecting draw and updateState to SDL2, let’s write
a standalone program that uses SDL2 to open a window, draw some pixels, and
waits for a keypress before shutting down. This will show us all we need to know
about SDL2, and the rest will be up to us.

import SDL
import Data.Word

-- These are needed since textures are accessed through pointers
import Foreign.Ptr
import Foreign.Storable

We start main by initializing SDL and creating a window. The window size is
scaled from the intended virtual screen size; we use a screen size with a resolution
of just 24 x 18 so that we can easily see the result of drawing a single pixel. The
window itself will have size 720 x 540.

screenSize = V2 24 18
screenScale = 30

main :: I0 ()

main = do
initializeAll
window <- createWindow "Hello, SDL2!" defaultWindow
windowSize window $= (screenScale *) <$> screenSize
withTexture <- setupTexture window

forever $ withTexture drawHello
where -- Continued below

In setupTexture, we attach a renderer and a texture to the window. We want an
efficient way of drawing individual pixels, and that is exactly what the texture gives
us. Most of the parameters here are not important for us, and we use some sensible
default values. As we will see, the R6B888 texture format is perhaps not exactly what
its name suggests, but still the closest to our needs. The TextureAccessStreaming
argument ensures we can get direct read-write access to the pixel data underlying
the texture.

Given this renderer and texture, we can ask SDL for a raw texture pointer
and manipulate pixels through it using the lockTexture / unlockTexture APL The
callback function drawTo is given a Ptr () to the beginning of the texture, and an

8.6 High-level simulation with SDL2

Int which is the rowstride, i.e. the pointer difference (in bytes) between the location
of two pixels that are vertical neighbors.

setupTexture window = do

renderer <- createRenderer window (-1) defaultRenderer

texture <- createTexture renderer RGB888 TextureAccessStreaming
screenSize

return $ \drawToTexture -> do
(ptr, stride) <- lockTexture texture Nothing
drawToTexture ptr (fromIntegral stride)
unlockTexture texture
SDL.copy renderer texture Nothing Nothing
present renderer

Now we can get creative in drawHello. This is the point where we need to
understand the RGB888 texture format. The name would suggest that it uses three
bytes per pixel, storing red, green, blue, then next pixel’s red, and so on. Instead,
each pixel is stored in four bytes, in machine byte order, with the fourth one unused.
Accordingly, on a little-endian machine, we can write a version of drawHello that
sets a single pixel at (10, 5) to red by accessing each color byte separately in reverse
(blue-green-red) order:

drawHello :: Ptr () -> Int -> I0 ()

drawHello ptr rowstride = do
pokeElemOff rowptr (x * 4 + Q) b
pokeElemOff rowptr (x * 4 + 1) g
pokeElemOff rowptr (x * 4 + 2) r

where

(x, y) = (10, 5)
(r, g, b) = (BxfO, Ox50, O0x50) :: (Word8, Word8, Word8)
rowptr = plusPtr ptr $ rowstride x y

This works, but it depends on the machine endiannness and in general just feels
awkward. The reason for that is we are going against the grain here: SDL’s intended
texture access is via 32-bit values. If we change drawHello to write the color as
a single Word32, not only does the code become cleaner, it will also have better
performance once we move to changing more pixels than just one.

drawHello :: Ptr (O -> Int -> I0 O
drawHello ptr rowstride = forM_ points $ \((x, y), rgb) -> do
let rowptr = plusPtr ptr $ rowstride * y
pokeElemOff rowptr x (rgb :: Word32)
where

137

138 Chapter8 Generative Graphics

points =
[((3,5), red)
, ((12,15), yellow)
, ((20, 3), blue)
1

red = Oxf0_50_50
yellow = Oxf0_e0_40
blue = 0x40_80_f0

We can now run our program and marvel at the window showing our abstract art:

However, there is no nice way to exit our program; the only thing we can do is
kill its process. This is because our main loop runs forever, with no way to exit.
Instead of running itin 10, we will run itin MaybeT I0,so thatwe canexitthe forever
loop at any time by calling mzero. Luckily, SDL's APl is already polymorphic over
the base monad, so we don’t have to wrap everything in 1iftI0 calls.

Let’s replace the main loop with something that only runs until we get an event
from SDL that should prompt us to quit:

runMaybeT $ forever $ do

events <- pollEvents

keyDown <- getKeyboardState

let shouldQuit =
any isWindowCloseEvent events ||
keyDown ScancodeEscape

guard $ not shouldQuit

1iftI0 $ withTexture drawHello32

8.6.2

8.6 High-level simulation with SDL2

Here, shouldQuit will be set to True if any of the latest events is a notification
that the main window was closed, or if the key is pressed.

isWindowCloseEvent ev = case eventPayload ev of
WindowClosedEvent{} -> True
_ -> False

This concludes our introduction to SDL2: we are now ready to connect our
bouncing ball functions to texture drawing routines.

A reusable SDL2 simulator framework

Here we tweak our Hello World example to factor out the parts that will need to
depend on the particulars of the simulated design:

e How the internal state is managed
e How input events [Event] and key states Scancode -> Bool are processed
e How the screen texture is updated

We will abstract over internal state management by allowing the simulation to
happen in any MonadI0 m. Input events and key states are going to be passed as
simple function parameters.

For the screen texture update, we want to allow versatility to get good perfor-
mance based on the access pattern (i.e. we want to expose the underlying texture
directly), but also use types to track the screen size to rule out malformed index-
ing. We achieve this by making an abstract type Rasterizer indexed by the screen
dimensions, and providing a library of trusted Rasterizer values for various use
cases.

newtype Rasterizer (w :: Nat) (h :: Nat) = Rasterizer
{ runRasterizer :: Ptr () -> Int -> I0 () }

Armed with this type, we can write a function that wraps the simulator in an
environment where we keep running it as long as it returns the rasterizer for the
current frame. This allows the simulator to decide to quit on its own. The only
“free” parameters we have left are the window title and the screen scaling factor,
since these are not inferrable from the types.

data VideoParams = MkVideoParams
{ windowTitle :: Text
, screenScale :: CInt
, screenRefreshRate :: Word32

139

140 Chapter8 Generative Graphics

withMainWindow
:: forall w h m. (KnownNat w, KnownNat h, MonadIO m)
=> VideoParams
-> ([Event] -> (Scancode -> Bool) -> MaybeT m (Rasterizer w h))

->m Q)

The implementation of withMainWindow is very similar to the Hello World pro-
gram; we simply pass to withTexture a drawing function that runs the Rasterizer
returned by the simulation.

withMainWindow MkVideoParams{..} runFrame = do
initializeAll
window <- createWindow windowTitle defaultWindow
windowSize window $= fmap (screenScale *) screenSize

withTexture <- setupTexture window
let render rasterizer = withTexture $ \ptr rowstride ->
1iftI0 $ runRasterizer rasterizer ptr rowstride

runMaybeT $ forever $ do
events <- pollEvents
keyDown <- getKeyboardState
let windowClosed = any isWindowCloseEvent events
guard $ not windowClosed
rasterizer <- runFrame events keyDown
render rasterizer

destroyWindow window

where
screenSize = V2 (snatToNum (SNat @w)) (snatToNum (SNat @h))

setupTexture window = ... -- as before

Once the main loop finishes (because windowClosed or the simulation exits with
mzero), we clean up the window by calling destroyWindow; this wasn’t needed for
our stand-alone Hello World program, since getting out of the the forever finishes
the whole process anyway, cleaning everything up; but here we are building a
library, so we have no control over whether clients will want to do other stuff after
withMainWindow finishes.

There is nothing yet in our code that would lock it to 60 frames per second (or
whatever else the refresh rate of a given circuit is). There’s nothing we can easily do
about it if our software simulation takes nore than 1/60!" of a second, but if runFrame
and render, taken together, take less time to run than the intended frame time, we
can just sleep for the remaining frame time. To this end, we add the combinator

8.6 High-level simulation with SDL2 141

atFrameRate, which record the time (as measured, in milliseconds, by SDL’s tick
function) before and after the computation for a given frame. waitFrame then
converts both the frame rate and the before/after time stamp into microseconds,
suitable for threadDelay.

atFrameRate :: (MonadIO m) => Int ->ma ->m a
atFrameRate frameRate act = do

before <- ticks

X <- act

after <- ticks

waitFrame frameRate before after

return Xx

waitFrame :: (MonadIO m) => Int -> Word32 -> Word32 -> m ()
waitFrame frameRate before after = when (slack > 0) $ 1iftIO0 $
threadDelay slack
where
frameTime = 1_000_000 "div' frameRate
elapsed = fromIntegral $ 1000 * (after - before)
slack = frameTime - elapsed

Armed with atFrameRate, we simply replace our main loop’s forever $ do ...
with forever $ atFrameRate screenRefreshRate $ do

We conclude our reusable simulator by writing a Rasterizer for combinational
pattern generators: we iterate y through all possible values of Index h, calculate the
pointer for each row using the row stride, and then poke the result of computing
the pattern’s color value starting from that pointer, 32-bit value by 32-bit value:

{-# INLINE packColor #-}

packColor :: Color -> Word32

packColor (r, g, b) =
fromIntegral r “shiftL™ 16 .|.
fromIntegral g “shiftL™ 8 .|.
fromIntegral b “shiftL"™ ©

rasterizePattern
(KnownNat w, KnownNat h)
=> (Index w -> Index h -> Color)
-> Rasterizer w h
rasterizePattern draw = Rasterizer $ \ptr rowstride -> do
for_ [minBound..maxBound] $ \y -> do
let rowPtr = plusPtr ptr $ fromIntegral y * rowstride
for_ [minBound .. maxBound] $ \x -> do
pokeElemOff rowPtr (fromIntegral x) (packColor $ draw x y)

142

8.6.3

Chapter8 Generative Graphics

Let's see some bouncing balls finally!

Now that we’ve built up the infrastructure, it is time for the payoff: running our
circuit design’s updateState and draw functions and seeing their results on our
screen in real time.

The idea is to pick StateT St I0 asthe monad we pass to withMainWindow. This
takes care of holding on to the state from one frame to the next. Since withMainWindow
wraps it in a MaybeT, we also have access to the effect of early termination, which
we can use to implement a custom exit command. In this example, we will use the
key as an exit trigger.

To get back to vanilla I0 for main, we simply use evalStateT to run the
StateT St I0 () returned by withMainWindow. We have arranged the types
of updateState and draw to minimize impedance mismatch with the StateT
combinators and with rasterizePattern:

main :: I0 ()
main =
flip evalStateT initState $
withMainWindow videoParams $ \events keyDown -> do
guard $ not $ keyDown ScancodeEscape

modify $ updateState defaultParams
gets $ rasterizePattern . draw defaultParams

where
videoParams = MkVideoParams

{ windowTitle = "Bouncing Ball"
, screenScale = 2
, screenRefreshRate = 60
+

And that’s it!

Exercises:

o Tweakable parameters. Instead of passing the defaultParams to updateState
and draw, change it into a proper signal. Connect some toggle switches as
input to change the ball size mid-game.

e Extend the SDL simulator to generate the toggle switch state from keyboard
events. For example, hook up the number keys n to to each flip one
virtual toggle switch.

e Similar to the earlier exercise, change this new version of the bouncing balls
circuit to run in a virtual resolution of 300 x 200 pixels, scaled by two and

8.7 Summary 143

centered. The software simulation should render into a 300 x 200 window,
and the hardware circuit will need to handle Nothing coordinates by drawing
some nice border / background, passing Just the valid virtual coordinates to
draw.

8.7 Summary

e A video pattern generator is a potentially stateful circuit mapping coordi-
nates to colors. By default, the video controller’s coordinate output is con-
nected directly to the pattern generator’s input, but we can put coordinate
transformers between them.

e Just like in the calculator project, if we structure our design around a state
transition function and a pure output function, this allows us to create a
high-level simulation by hooking into the “interesting” parts of our design.

e For interactive, real-time designs with video output, such as video games,
sampling input and updating the state once per frame is a natural and easily-
implemented solution.

e The SDL2 library provides an easy, robust and performant way of rendering
pixel-based graphics, which can be used to simulate video output in real
time.

Haskell has become the functional programming language of choice for
many developers due to its excellent tools for abstraction and principled
program design. The open source Clash hardware description language
now brings these features to FPGA development.

Retrocomputing with Clash takes the experienced Haskell programmer on
a journey into the world of hardware design with Clash. Our approach
is based on using Haskell to its fullest potential, using abstractions like
monads and lenses in building a library of reusable components.

But that wouldn't put the fun in functional programming! And so we put
these components to good use in implementing various retro-computing
devices:
® Pocket calculator
* Pong
e A simple, but Turing-complete computer that uses Brainfuck as its
machine code
e An implementation of the CHIP-8 virtual computer specification
¢ Intel 8080 CPU
e Space Invaders arcade machine
e Compucolor II, a home computer from 1977 complete with
keyboard, color, video, and a floppy drive

‘;o’y love the very Haskell approach to circuit design in this book, as
S my own write-Verilog-in-Haskell style. It leverages Haskell’s type
system in a very natural way to protect against many traps we as circuit de-
signers often fall into.
The book clearly demonstrates the benefits of using a modern programming lan-
guage for circuit design, where it builds reusable functionality and components
at a far finer granularity than what I'm used to in traditional hardware descrip-
tion languages.
— Christiaan Baaij,
Clash lead developer, QBayLogic co-founder

is the book for functional programmers looking to get into FPGAs and
tal logic design. Learn Clash, the “I cant belicve it’s not Haskell!” hardware
description language, while indulging in nostalgia for the 1980s. Take a joyride

through a variety of hands-on projects, including Pong, Space Invaders, and the
Compucolor 11, a personal computer based on the Intel 8080. Recommended.

— Miétek Bak,
mathematician

	Introduction
	Into the world of FPGAs
	Computers everywhere
	Field-programmable Gate Arrays
	Retrocomputing
	Haskell meets Hardware

	Hello, Clash!
	Bit
	Signal
	Our first circuit
	Summary

	Combinational Circuits are Applicative Functors
	Signal is an applicative functor
	BitVectors and Vectors
	Controlling many LEDs
	Seven-segment display
	Summary

	State, Sequencing and Clocks: The Register Transfer-Level Model
	Clocks and registers
	The RTL model: register and delayed feedback
	Finally blinkenlights!
	Passing around Clock, Reset and Enable lines implicitly
	Multiple clocks
	Pushbutton-toggled LED
	Summary

	Time-domain Multiplexing
	Does this have anything to do with mux?
	Seven-segment displays, revisited
	Keyboard matrix sweeping
	Showing keypad input on a seven-segment output
	Summary

	Project: Pocket Calculator
	A Minimal Viable Calculator
	Binary Coded Decimal arithmetic
	State and state transitions
	An interactive software implementation
	Hooking it up to hardware peripherals
	Summary

	Video Output Using VGA
	Basic operation of a CRT display
	Video Graphics Array
	VGA from Clash
	Summary

	Generative Graphics
	Combinational patterns
	Stateful pattern generators
	Animation
	Coordinate transformations
	Animation, differently
	High-level simulation with SDL2
	Summary

	Project: Pong
	What is Pong?
	Top-level design
	What is our state?
	Drawing
	Summary

	Asynchronous Serial Communication
	Synchronicity
	Universal Asynchronous Serial Communication
	Serial Transmitter
	Serial Receiver
	Applications
	Summary

	Programmable Machines
	RAM machines
	Memory
	CPU
	Summary

	Brainfuck
	Why Brainfuck
	Brainfuck as a programming language
	Brainfuck as byte code
	Brainfuck with external memory
	A complete Brainfuck computer
	Brainfuck as machine code
	High-level simulation of the CPU
	The logic board
	Low-level simulation of the logic board
	Top-level circuit and peripherals
	Summary

	CHIP-8
	History
	The CHIP-8 computer
	Instruction set
	Video
	CPU
	Simulation, take 1
	The complete machine
	Simulation, take 2
	Memory contention
	Summary

	Address decoding and memory maps
	Room for improvement
	A whirlwind intro to Template Haskell
	A memory map DSL
	Backpane connections
	Access contention
	Summary

	Intel 8080
	History
	Veracity
	Interface
	Instruction set architecture
	Instruction decoding
	Microcoded implementation
	Micro-architecture & micro-instructions
	A direct software implementation
	The complete CPU
	Summary

	Project: TinyBASIC
	What is TinyBASIC?
	Asynchronous Communications Interface Adapter
	The core logic board
	Version 1: serial I/O
	PS/2 keyboard interface
	Textual video
	Screen editing
	Version 2: Keyboard and video
	Summary

	Space Invaders
	The design of SpaceInvaders
	How it fits together
	Peripherals
	Video
	Logic board
	Simulation
	Summary

	Compucolor II
	Design
	A Minimal Viable CompucolorII
	Detailed rendering with SDL
	Video hardware
	TMS5501
	Keyboard
	Floppy drive
	Cycle-count accuracy
	Slowing down the CPU
	Our complete computer
	Summary

	Parting words
	Index

