Retrocomputing with Clash
Haskell for FPGA Hardware Design

Gergo Erdi

OFYOr-1010

OFo

Retrocomputing
with Clash

Haskell for FPGA Hardware Design

GERGO ERDI

https://unsafePerform.lO/retroclash/

https://unsafePerform.IO/retroclash/

9.1

Project: Pong

In this chapter, we answer the call of the bouncing ball example circuit from the
previous chapter, and build our own version of Pong, one of the earliest video
games.

The original Pong didn’t run on a computer: instead, its game logic and its
video output was all implemented directly as a circuit of discrete components. Our
version will also be computer-less; however, rather than building a rat’s nest of
connected registers, we will apply the same principled design as we did in the
Calculator project.

What is Pong?

Pong is a very minimalistic video game simulation of tennis. Players control paddles
on the sides of the screen, by moving them vertically. A ball is bouncing between
the paddles and the top and bottom edges of the screen. The aim of the player is
to not let the ball go out of bounds on their side. In the original two-player version,
there are two paddles, one for each player. Here, we will build a solitaire version
first, and leave the two-player version as an exercise. Basically, our game is going to
be the squash equivalent to Pong’s tennis.

Wall
~

Ball 1 Paddle

From the outside point of view, Pong is a circuit which outputs a video signal

145

146 Chapter9 Project: Pong

and connects to inputs for paddle control. We will use two pushbuttons for moving
the paddle up or down, and generate VGA in 640 x 480@60 mode for the video
output. Just for the fun of it, and to give it that nice chunky retro look, the game
itself will only use 256 x 200 resolution, which we will scale up by two and centered
it on the screen.

9.2 Top-level design

Internally, we will follow the same design as the bouncing ball toy: a register holding
the state, a state transition function consuming input, and a drawing function that
takes the current state, and turns it into output.

Putting it all together, our design will be as follows:

»(® HSYNC / VSYNC

vgaX X
VGA >—-| scale . center H
dr‘aw}-P-CO RGB
vgaY N y A
| scale . center

Updateﬂe}—b en
BTN_DOWN .>->_I_> 7} state

BTN_UP @

This is the same design as the bouncing ball one, with an added coordinate
transformation to end up with a drawing area of 256 x 200, and input from the
outside world in the form of the two pushbuttons controlling the paddles.

With all this groundwork laid, it is time to work out the missing details:

e data Inputs, arecord that holds all user inputs

e data St, the game state

e updateState :: Inputs -> St -> St, the state transition function

e draw :: St -> Index 256 -> Index 280 -> Color, the drawing function

9.2 Top-level design 147

Once these are filled in, our topEntity will mostly match that of the bouncing
ball circuit:

data Inputs = MkInputs
{ paddleUp :: Bool
, paddleDown :: Bool
}

type ScreenWidth = 256
type ScreenHeight = 200

topEntity
"CLK_25MHZ" ::: Clock Dom25
-> "RESET" ::: Reset Dom25
-> "BTN_UP" ::: Signal Dom25 (Active High)
-> "BTN_DOWN" ::: Signal Dom25 (Active High)
-> "VGA" ::: VGAQut Dom25 8 8 8
topEntity = withEnableGen board
where

board (fmap fromActive -> up) (fmap fromActive -> down) = vgaOut
vgaSync rgb
where
VGADriver{..} = vgaDriver vgaé40x480até0
frameEnd = isFalling False (isJust <$> vgaY)

params defaultParams
inputs = MkInputs <$> up <*> down

st = regEn initState frameEnd $
updateState params <$> inputs <*> st

rgb = fmap (maybe (8, 8, 8) bitCoerce) $
1TiftA2 <$> (draw params <$> st) <*> x <*> y

where
(x, _) = scale (SNat @2) . center $ vgaX
(y, _) = scale (SNat @2) . center $ vgaY

Accordingly, the SDL-based simulator’s main function also remains mostly the
same. We increase the scaling factor to 4, since the virtual screen we are simulating
now is only 256 x 200 pixels — remember, the transformation to 640 x 480 takes place
only in topEntity, as a measure to convert to a standard video format that real-world
screens can understand. This conversion is morally no different from converting
the Active High pushbutton values to a semantic Bool, so we put it outside draw.

148 Chapter9 Project: Pong

main :: I0 ()
main =
flip evalStateT initState $
withMainWindow videoParams $ \events keyDown -> do
guard $ not $ keyDown ScancodeEscape

let params = defaultParams

modify $ updateState params $ MkInputs
{ paddleUp = keyDown ScancodeUp
, paddleDown = keyDown ScancodeDown
I

gets $ rasterizePattern . draw params

where
videoParams = MkVideoParams

{ windowTitle = "Pong"

, screenScale = 4

, screenRefreshRate = 60

F

To recap, the signatures of the remaining parts to implement are:

data St

updateState :: Params -> Inputs -> St -> St
draw :: Params -> St -> Index ScreenWidth -> Index ScreenHeight -> Color

9.3 Whatis our state?

Compared to just a ball bouncing around in the emptiness of a video screen, a game
of Pong is similar in some ways and different in others:

e There is a ball bouncing around in both cases. Our State will need to hold the
ball’s position and speed just like before.

e Pong has another moving part: the paddle. Since it can only be moved
vertically, only its Y position needs to be stored.

e We want to draw the ball as before, but of course we also want to draw the
paddle (at the right position). To emphasize to the player that it is their
responsibility to hit the ball back from the right-hand edge, we will also draw
walls around the other three edges of the screen.

e Pong is interactive: the player can move the paddle up or down. We take care
of this by adding an extra Inputs parameter to updateState.

9.3 Whatis our state?

e There is also some complicated interaction between the ball and the paddle.

At the minimum, the ball bounces off the paddle when it hits it; but that
alone makes for a very boring variant of Pong. We will spice it up a notch by
allowing the paddle to nudge the ball vertically, if the paddle itself is moving
vertically at the moment of contact.

e Pong is a game with a goal: to avoid the ball leaving the playfield by flying
off to the right. We should give some kind of indication of failure when that
happens: we will flash the background color in red for one frame.

Based on this analysis, it is clear that St should extend the horizontal and vertical
speed-and-position of the ball with a vertical paddle position, and a flag denoting if
we should draw the background in the given frame in red. updateFlag will always
clear that flag (unless, of course, the ball is just now leaving the game area); this
ensures that it will flash for one frame only.

type Coord = Signed 10

data St = MkSt
{ _ballH, _ballV :: (Coord, Coord)
, _paddleY :: Coord
, _gameOver :: Bool
¥
deriving (Show, Generic, NFDataX)
makeLenses ''St

initState :: St
initState = MkSt
{ _ballH = (10, 2)
, _ballv = (100, 3)
, _paddleY = 100
, _gameOver = False

}

The Parans datatype likewise extends the ball size with new fields for the width
of the walls and the size of the paddle. We also need to know how much to move
the paddle on each frame if the user is holding one of the input buttons, and how
much nudge should be applied to the ball when hitting it with a moving paddle.

data Params = MkParams
{ wallSize, ballSize :: Coord
, paddleHeight, paddleWidth :: Coord
, paddleSpeed, nudgeSpeed :: Coord

149

150 Chapter9 Project: Pong

defaultParams :: Params
defaultParams = MkParams
{ wallSize = 5
, ballSize = 5
, paddleHeight = 50
, paddleWidth = 5
, paddleSpeed = 3
, hudgeSpeed = 3

9.3.1 updateState

If we know what is in our state, we also know how to update it: we just update
every component of it, using appropriate helper functions. The devil will be in the
details of them, but we can keep this top-level updateState simple:

updateState :: Params -> Inputs -> St -> St
updateState params inp = execState $ do
updateBall params inp
updatePaddle params inp
checkBounds params

Updating the ball is very similar to our previous code: we update its horizontal
and vertical position and speed separately. Vertically, there is no extra complication;
but horizontally, we need to include the paddle as a reflector only if the ball is
(vertically) where the paddle is. Moreover, to implement nudging the ball on a hit
with the paddle, we need to detect that collision; so we will extend reflect slightly
to return an additional Bool denoting collisions.

reflect
(Num a, Num a', Ord a, Ord a')

=> (a, a")
-> (a, a')
-> (Bool, (a, a"))

reflect (p, n) (x, dx)
| sameDirection n dist = (True, (p + dist, negate dx))
| otherwise = (False, (x, dx))

where

sameDirection u v = compare @ u == compare 0 v
dist = p - x

9.3 Whatis our state?

We will use reflect and move in our State St monad, so let’s use a shorthand
for their lifted versions:

moveM :: (Num a) => State (a, a) ()
moveM = modify move

reflectM
(Num a, Num a', Ord a, Ord a')
=> (a, a') -> State (a, a') Bool
reflectM = state . reflect

This gives us everything to implement updateBall:

e updateVert simply moves the ball and checks for reflections from the top and
bottom walls:

updateVert :: Params -> State St ()
updateVert MkParams{..} = void $ do
zoom ballV $ do
moveM
reflectM (wallSize, 1)
reflectM (screenHeight - wallSize - ballSize, -1)

e updateHoriz looks at the vertical position to see we are at the height of the
paddle, and decides based on that whether to include a second reflector on
the right-hand size.

updateHoriz :: Params -> State St Bool
updateHoriz MkParams{..} = do
atPaddle <- do
y0 <- use paddleY
(y, _) <- use ballVv
return $ y “between® (y0 - ballSize, y@ + paddleHeight)
zoom ballH $ do
moveM
reflectM (wallSize, 1)
if not atPaddle then return False
else reflectM (screenWidth - paddleWidth - ballSize, -1)

e updateBall itself runs updateVert and updateHoriz, and changes the vertical
ball speed if updateHoriz returns True, i.e. if there was a collision with the
paddle:

151

Chapter9 Project: Pong

updateBall :: Params -> Inputs -> State St ()
updateBall params@MkParams{..} MkInputs{..} = do
updateVert params
hitPaddle <- updateHoriz params
when hitPaddle $ ballV._2 += nudge
where
nudge | paddleDown = nudgeSpeed
| paddleUp = negate nudgeSpeed
| otherwise = 0

Compared to the complicated logic of checking for bounces and paddle hits,
updating the paddle’s state is much simpler: we increase or decrease paddleY by
paddleSpeed depending on which input buttons are held in the given frame, and
then ensure it stays in the playfield:

updatePaddle :: Params -> Inputs -> State St ()
updatePaddle MkParams{..} MkInputs{..} = do
when paddleUp $ paddleY -= paddleSpeed
when paddleDown $ paddleY += paddleSpeed
paddleY %= clamp (wallSize, screenHeight - (wallSize + paddleHeight))

clamp :: (Ord a) => (a, a) -> a -> a
clamp (Lo, hi) = max 1o . min hi

To detect the ball going out of bounds, we simply check if its X coordinate is
larger than the screen width. This way, even after the ball passes the point of no
return at the edge of the paddle, we will keep drawing it until it fully leaves the
screen — increasing the player’s frustration just a bit more.

It is here that we set the gameOver field of the state. As mentioned earlier, this
field is set to True only for the duration of the single frame when the ball actually
flies out of bounds — in the next frame, the ball is already reset into the middle of
the playfield (keeping its current speed and Y coordinate).

checkBounds :: Params -> State St ()
checkBounds MkParams{..} = do
out0fBounds <- zoom ballH $ gets $ \(x, _) -> x > screenWidth

gameOver .= outOfBounds
when outOfBounds resetBall
where

resetBall = ballH._1 .= half screenWidth

9.4

9.4 Drawing

Drawing

The main structure of draw is very similar to the bouncing ball example: we just
have more shapes to check against the current raster beam position.

draw :: Params ->

draw MkParams{..}

| iswWall =

| isPaddle =

| isBall =

| otherwise =
where

St -> Index ScreenWidth -> Index ScreenHeight -> Color
MkSt{..} ix iy

white

blue

yellow

if _gameOver then red else gray

x = fromIntegral ix
y = fromIntegral iy

rect (x0, y0) (w, h) =
X “between® (x0, x0 + w) &&
y “between® (y0, y0 + h)

-- Continued below

The definitions of the individual shapes are all straightforward: the paddle and
the ball are rectangles, and each wall is an even simpler comparison.

isWall = or

paddleStart

[

4

I

]

X < wallSize
y < wallSize
y >= screenHeight - wallSize

isPaddle =

(ballX, _)
(balvy, _)
isBall = rect (ballX, ballY) (ballSize, ballSize)

screenWidth - paddleWidth

rect (paddleStart, _paddleY) (paddleWidth, paddleHeight)

_ballH
_ballv

For completeness’s sake, here are some RGB values for these colors that hopefully
won't hurt the player’s eyes too much:

white, blue, yellow, red, gray :: Color
Oxff, Oxff)
0x80, 0xf0)
Oxe0, 0x40)
0x00, 0x00)
0x30, 0x30)

white =
blue =
yellow =
red

gray

(oxff,
(6x40,
(exfo,
(0x80,
(0x30,

153

154

Chapter9 Project: Pong

By plugging these definitions of St, updateState, and draw into our topEntity
and main, we finish our implementation of (solitaire) Pong, including an interactive

SDL simulation.

Exercises:

On each successful hit, flash the part of the physical screen that is outside the
playing area of the virtual screen.

Increase difficulty as the game goes on by decreasing the paddle size on every
k" successful hit, up to a reasonable minimum paddle size.

Draw the ball as a more round shape.

Keep score. Drawing numerals would be quite hard with what we have so far,
but we could e.g. draw a progress bar counting up to 10 misses.

Two-player mode. This should be quite self-explanatory: hook up two more
buttons to move a second, left-hand side paddle up and down. The score
could be displayed as a tug-of-war progress bar.

A fun variant of two-player Pong is to give a third “boost” button to both
players, and scale up the ball’s speed by two if exactly one of the players is
holding their boost button.

9.5 Summary

Starting with the implementation of the bouncing ball circuit, the only struc-
tural change is adding an input signal.

The rest of the changes are in the definition of the state datatype and its
transition function. These are all “normal”, pure Haskell parts that we just
happen to use in the context of a Clash circuit.

Haskell has become the functional programming language of choice for
many developers due to its excellent tools for abstraction and principled
program design. The open source Clash hardware description language
now brings these features to FPGA development.

Retrocomputing with Clash takes the experienced Haskell programmer on
a journey into the world of hardware design with Clash. Our approach
is based on using Haskell to its fullest potential, using abstractions like
monads and lenses in building a library of reusable components.

But that wouldn't put the fun in functional programming! And so we put
these components to good use in implementing various retro-computing
devices:
® Pocket calculator
* Pong
e A simple, but Turing-complete computer that uses Brainfuck as its
machine code
e An implementation of the CHIP-8 virtual computer specification
¢ Intel 8080 CPU
e Space Invaders arcade machine
e Compucolor II, a home computer from 1977 complete with
keyboard, color, video, and a floppy drive

‘;o’y love the very Haskell approach to circuit design in this book, as
S my own write-Verilog-in-Haskell style. It leverages Haskell’s type
system in a very natural way to protect against many traps we as circuit de-
signers often fall into.
The book clearly demonstrates the benefits of using a modern programming lan-
guage for circuit design, where it builds reusable functionality and components
at a far finer granularity than what I'm used to in traditional hardware descrip-
tion languages.
— Christiaan Baaij,
Clash lead developer, QBayLogic co-founder

is the book for functional programmers looking to get into FPGAs and
tal logic design. Learn Clash, the “I cant belicve it’s not Haskell!” hardware
description language, while indulging in nostalgia for the 1980s. Take a joyride

through a variety of hands-on projects, including Pong, Space Invaders, and the
Compucolor 11, a personal computer based on the Intel 8080. Recommended.

— Miétek Bak,
mathematician

	Introduction
	Into the world of FPGAs
	Computers everywhere
	Field-programmable Gate Arrays
	Retrocomputing
	Haskell meets Hardware

	Hello, Clash!
	Bit
	Signal
	Our first circuit
	Summary

	Combinational Circuits are Applicative Functors
	Signal is an applicative functor
	BitVectors and Vectors
	Controlling many LEDs
	Seven-segment display
	Summary

	State, Sequencing and Clocks: The Register Transfer-Level Model
	Clocks and registers
	The RTL model: register and delayed feedback
	Finally blinkenlights!
	Passing around Clock, Reset and Enable lines implicitly
	Multiple clocks
	Pushbutton-toggled LED
	Summary

	Time-domain Multiplexing
	Does this have anything to do with mux?
	Seven-segment displays, revisited
	Keyboard matrix sweeping
	Showing keypad input on a seven-segment output
	Summary

	Project: Pocket Calculator
	A Minimal Viable Calculator
	Binary Coded Decimal arithmetic
	State and state transitions
	An interactive software implementation
	Hooking it up to hardware peripherals
	Summary

	Video Output Using VGA
	Basic operation of a CRT display
	Video Graphics Array
	VGA from Clash
	Summary

	Generative Graphics
	Combinational patterns
	Stateful pattern generators
	Animation
	Coordinate transformations
	Animation, differently
	High-level simulation with SDL2
	Summary

	Project: Pong
	What is Pong?
	Top-level design
	What is our state?
	Drawing
	Summary

	Asynchronous Serial Communication
	Synchronicity
	Universal Asynchronous Serial Communication
	Serial Transmitter
	Serial Receiver
	Applications
	Summary

	Programmable Machines
	RAM machines
	Memory
	CPU
	Summary

	Brainfuck
	Why Brainfuck
	Brainfuck as a programming language
	Brainfuck as byte code
	Brainfuck with external memory
	A complete Brainfuck computer
	Brainfuck as machine code
	High-level simulation of the CPU
	The logic board
	Low-level simulation of the logic board
	Top-level circuit and peripherals
	Summary

	CHIP-8
	History
	The CHIP-8 computer
	Instruction set
	Video
	CPU
	Simulation, take 1
	The complete machine
	Simulation, take 2
	Memory contention
	Summary

	Address decoding and memory maps
	Room for improvement
	A whirlwind intro to Template Haskell
	A memory map DSL
	Backpane connections
	Access contention
	Summary

	Intel 8080
	History
	Veracity
	Interface
	Instruction set architecture
	Instruction decoding
	Microcoded implementation
	Micro-architecture & micro-instructions
	A direct software implementation
	The complete CPU
	Summary

	Project: TinyBASIC
	What is TinyBASIC?
	Asynchronous Communications Interface Adapter
	The core logic board
	Version 1: serial I/O
	PS/2 keyboard interface
	Textual video
	Screen editing
	Version 2: Keyboard and video
	Summary

	Space Invaders
	The design of SpaceInvaders
	How it fits together
	Peripherals
	Video
	Logic board
	Simulation
	Summary

	Compucolor II
	Design
	A Minimal Viable CompucolorII
	Detailed rendering with SDL
	Video hardware
	TMS5501
	Keyboard
	Floppy drive
	Cycle-count accuracy
	Slowing down the CPU
	Our complete computer
	Summary

	Parting words
	Index

