
ScottCheck: An Adventure in Symbolic Execution

Gergő Érdi
http://unsafePerform.IO/

Berlin Functional Programming Group, 13th October 2020.

1 / 28

http://unsafePerform.IO/

1. Structure and Interpretation of Adventure
Games

2 / 28

Text adventure games

3 / 28

Text adventure games

• Interactive fiction
• Text adventure games

• Subset of interactive fiction: well-defined win state
• (Debian 2.0 installer in 1998?)
• Unwinnable games are faulty

• Under the hood
• Game data + interpreter
• Infocom, ADS, Inform, …
• Adventure International

4 / 28

Adventure International

• Scott Adams (unrelated to the Dilbert guy)
• Late ’70s home computers
• Goal: move all items marked as treasure to the single location

marked as the treasury
• SCORE command shows number of treasure collected. Win by

issuing SCORE with max score.
• Game data: text file containing magic numbers and string

literals

5 / 28

Example data file: Header

0
6 -- Number of items
10 -- Number of script lines
18 -- Dictionary size
5 -- Number of rooms
-1 -- Player carry capacity
3 -- Starting room
1 -- Max score
3 -- Word length
-1 -- Lamp capacity
7 -- Number of messages
1 -- Treasury room number

6 / 28

Example data file: Dictionary
"AUT" "ANY"
"GO" "NOR"
"SCO" "SOU"
"INV" "EAS"
"LOO" "WES"
"OPE" "UP"
"" "DOW"
"" "DOO"
"" "KEY"
"" "CRO"
"GET" "COI"
"" ""
"" ""
"" ""
"" ""
"" ""
"" ""
"" ""
"DRO" ""

7 / 28

Example data file: Rooms & messages

0 0 0 0 0 0 ""
0 2 0 0 0 0 "gorgeously decorated throne room"
1 0 3 0 0 0 "square chamber"
5 0 0 2 0 0 "gloomy dungeon"
3 0 0 0 0 0 "dungeon cell"
0 3 0 0 0 0 "damp, dismal crypt"

""
"I smell something rotting to the north."
"It's locked."
"OK"
"Vampire cowers away from the cross!"
"Vampire looks hungrily at me."
"Vampire bites me! I'm dead!"
"I'm not going anywhere near that vampire!"

8 / 28

Example data file: Items

"Sign says: leave treasure here, then say SCORE" 1
"Wooden cross/CRO/" 2
"Locked door" 3
"Brass key/KEY/" 5
"Open door leads south" 0
"*Gold coin*/COI/" 4
"Vampire" 5

9 / 28

Example data file: Script

300 0 0 0 0 0 9750 0
450 0 0 0 0 0 9900 0
600 0 0 0 0 0 9600 0
25 64 0 0 0 0 150 0
757 42 72 0 0 0 300 0
757 42 40 80 0 0 10803 9600
157 82 80 0 0 0 8164 0
100 122 21 0 0 0 600 0
100 122 26 0 0 0 750 0
25 122 26 0 0 0 963 0
1508 122 26 0 0 0 1050 0

10 / 28

Example data file: Script

757 42 72 0 0 0 300 0

• User input: OPE DOO
• Condition: Item 2 "Locked door" in current room
• Condition: Item 3 "Brass key" not available
• Action: Print message 2 "It's locked"

11 / 28

The Grand Plan

• Martin Lester’s talk at WPTE 2020:
• ScottFree: Off-the-shelf game interpreter written in C
• Manually “partially evaluated” for a given game, infinite loops

replaced with bounded ones, passed to CBMC
• CBMC output passed to an SMT solver

• My approach: bubblegum and duct tape
• Idiomatic Haskell interpreter
• Changed just so, to use symbolic values
• In one week

12 / 28

2. Monad Transformers for Concrete Interpreters

13 / 28

Interactive interpreter

• Parse game data into algebraic datatype GameData

• Game state

data St = St
{ currentRoom :: Int16
, itemLocations :: Array Int16 Int16
}

• Stack of monad transformers:

type Engine =
ReaderT GameData (WriterT [String] (State St))

step :: (Int16, Int16) -> Engine (Maybe Bool)

(Return value: win/fail state)
• Thin layer of IO: get input, parse with dictionary, print output

14 / 28

3. Reducability Among Fictional Problems

15 / 28

Satisfiability

• SAT: Boolean satisfiability problem
• Given a Boolean formula with variables, is it satisfiable?
• Trivially in NP: we can verify a given var assignment by eval
• But also NP-hard!
• 3-SAT (CNF SAT with ≤ 3 literals per clause): the OG

NP-complete problem

• Mature solvers chock full of heuristics
• SMT: Satisfiability modulo theories (e.g. integer arithmetic)
• Represent full game logic as a boolean formula with user input

as the variables

16 / 28

4. Symbolic Execution and Puzzle Testing

17 / 28

Symbolic execution
• What is the value of

if x + (if b then 0 else 2) > x + 1 then 3 else 4

• If b has a concrete value, it’s obvious.
• If b isn’t known, we can represent the result symbolically:

if $x + (if $b then 0 else 2) > $x + 1 then 3 else 4

• We can still make some progress:
if (if $b then $x + 0 else $x + 2) > $x + 1
then 3 else 4

if (if $b then $x + 0 > $x + 1 else $x + 2 > $x + 1)
then 3 else 4

if (if $b then False else True) then 3 else 4

if $b then 4 else 3

18 / 28

Symbolic execution
• What is the value of

if x + (if b then 0 else 2) > x + 1 then 3 else 4

• If b has a concrete value, it’s obvious.
• If b isn’t known, we can represent the result symbolically:

if $x + (if $b then 0 else 2) > $x + 1 then 3 else 4

• We can still make some progress:
if (if $b then $x + 0 else $x + 2) > $x + 1
then 3 else 4

if (if $b then $x + 0 > $x + 1 else $x + 2 > $x + 1)
then 3 else 4

if (if $b then False else True) then 3 else 4

if $b then 4 else 3

18 / 28

Symbolic execution
• What is the value of

if x + (if b then 0 else 2) > x + 1 then 3 else 4

• If b has a concrete value, it’s obvious.
• If b isn’t known, we can represent the result symbolically:

if $x + (if $b then 0 else 2) > $x + 1 then 3 else 4

• We can still make some progress:
if (if $b then $x + 0 else $x + 2) > $x + 1
then 3 else 4

if (if $b then $x + 0 > $x + 1 else $x + 2 > $x + 1)
then 3 else 4

if (if $b then False else True) then 3 else 4

if $b then 4 else 3

18 / 28

Symbolic execution
• What is the value of

if x + (if b then 0 else 2) > x + 1 then 3 else 4

• If b has a concrete value, it’s obvious.
• If b isn’t known, we can represent the result symbolically:

if $x + (if $b then 0 else 2) > $x + 1 then 3 else 4

• We can still make some progress:
if (if $b then $x + 0 else $x + 2) > $x + 1
then 3 else 4

if (if $b then $x + 0 > $x + 1 else $x + 2 > $x + 1)
then 3 else 4

if (if $b then False else True) then 3 else 4

if $b then 4 else 3
18 / 28

5. Notions of Adventuring and Monads

19 / 28

SBV-based interpreter

• Change representation of St:

data St = St
{ currentRoom :: SInt16
, itemLocations :: Array Int16 SInt16
} deriving (Generic, Mergeable)

• Structure of items is static!
• Follow type errors

• Num operations Just WorkTM, Boolean operations need
SBV-specific versions

• Mergeable instances for MTL monad transformers

• if_then_else using rebindable syntax!

ifThenElse :: (Mergeable a) => SBool -> a -> a -> a
ifThenElse = ite

20 / 28

SBV-based interpreter: Combinators

• Mergeable-based versions of monadic combinators

sWhen :: (Monad m, Mergeable (m ())) =>
SBool -> m () -> m ()

sWhen b act = if b then act else return ()

• Pattern matching on script code symbolically

sCase
:: (Mergeable a)
=> SInt16
-> [(Int16, a)] -> a -> a

sCase x cases def = go cases
where

go [] = def
go ((k,v):kvs) =

if x .== literal k then v else go kvs

21 / 28

Turning the crank

step :: (SInt16, SInt16) -> Engine (SMaybe Bool)

• SBV’s Query monad allows incremental SMT queries
• We keep running step with new inputs, until it can be

satisfied
• Satisfying input recovered from SMT solver’s state

loopState
:: (SymVal i)
=> Query (SBV i)
-> s
-> (SBV i -> State s SBool)
-> Query [i]

22 / 28

Recovering interactive mode

• The only source of “really symbolic” values is the input to
step

• Idea: feed interactive input as single possible value, this
ensures output has a single possible value as well

• Same interpreter can be used for checking and interactive
execution!

23 / 28

Recovering interactive mode

• The only source of “really symbolic” values is the input to
step

• Idea: feed interactive input as single possible value, this
ensures output has a single possible value as well

• Same interpreter can be used for checking and interactive
execution!

23 / 28

6. Demo: Here’s one I made earlier

24 / 28

Demo: ScottKit, tutorial #4

Throne Room Crypt
[sign] [vampire, key]
| |
| |
Chamber---------Dungeon (starting room)
[cross] [door]

=
|
Cell
[*coin*]

25 / 28

Demo: ScottKit, tutorial #4

00:00 Searching at depth: 1
...
02:38 Searching at depth: 14
03:35 Solution found:
03:35 1. GO WEST
03:35 2. GET CROSS
03:35 3. GO EAST
03:35 4. GO NORTH
03:35 5. GET KEY
03:35 6. GO SOUTH
03:35 7. OPEN DOOR
03:35 8. GO DOOR
03:35 9. GET COIN
03:35 10. GO NORTH
03:35 11. GO WEST
03:35 12. GO NORTH
03:35 13. DROP COIN
03:35 14. SCORE

26 / 28

Demo: ScottKit, tutorial #4

27 / 28

(check-sat)

http://unsafePerform.IO/scottcheck/

Special thanks to Levent Erkök for helping out with SBV.

Questions?

28 / 28

http://unsafePerform.IO/scottcheck/

	Structure and Interpretation of Adventure Games
	Monad Transformers for Concrete Interpreters
	Reducability Among Fictional Problems
	Symbolic Execution and Puzzle Testing
	Notions of Adventuring and Monads
	Demo: Here's one I made earlier

